
Embedding of Space-Time p. 1

 Embedding of Space-Time
By Georg Kummer

 mailto:Georg.Kummer@g-kummer.de

Abstract

This article presents a new approach for the geometry of space-time with “Dark Matter” 
and “Dark-Energy” effects.
Motivated by an introduced merging of classical de-Sitter space (dS) and Anti-de-Sitter 
space (AdS) in a 6-D light-cone and the embedding of the Schwarzschild space (Sch) in 
a 6-D space, an embedding of stationary isotropic metrics into a common sphere in flat

R2,8 1 is proposed. Integrability conditions for the embedding lead to inequalities 
between radial parameter and Schwarzschild radius, depending on the curvature radius 
of the global sphere. These inequalities define a minimal length structure in 3-D space. 
The minimal length corresponds to the size of a Kaluza-Klein (K-K) sphere (Section 2). 
A modification of  the phase of the K-K sphere then leads to a non-stationary metric 
(section III) and diagonalization results in a non-linear PDE-system. We derive the 
associated Hamilton and Hamilton-Jakobi equations  and we offer a particle model for the
equations with the phase as the particle action. We motivate special initial values and 
explicitly integrate the characteristic equations. At initial time, the metric has no time 
dimension and an almost 2-dimensional spatial extension. In the model  the gravitation 
“constant” and the speed of light become time and space dependent. The metric tends 
for large time at any spatial point to the Schwarzschild metric, but behaves quite 
different in the limit of large large spatial distances. This coordinate dependency leads to 
a redshift of radiation from far objects as also to additional attractive forces and so 
describes main effects concerned with “dark energy” and “dark matter”.
In section IV  properties of the complex space, arising from an orthogonal projection of 
the Kaluza-Klein dimension onto the light cone, are pointed out.  In these coordinates 
any one of the embedded spaces becomes, in a coherent limit, a minimal Lagrangian 
submanifold, which is just a 2-D sphere. After this, in section V the ansatz is discussed 
under the point of the view of classical Kaluza-Klein theory [WL,Le,Str,Bl]. 

I Introduction
Classically, dS and AdS metrics belong to the Friedman-Lemaitre cosmological model. 
DS describes an absolute homogenous, expanding, and AdS a contracting universe 
[St,Dr,Ri,Bl]. Due to the observations of an expanding universe in the last century, AdS 
is rejected as a model of space-time, but AdS geometry plays an important role in 
modern physical theories [RO]. The classical dS and AdS are just hyper-spheres in a five
dimensional flat space, but the signature of both flat metrics differ (see [St, Mos] and 
Appendix A). While the causal structure of dS is causal, the one of AdS is acausal  and 
allows closed time-like paths [Mos].

The two (to my knowledge) known embeddings of Sch into a flat 6-dimensional space, 
the Kasner and the Fronsdal embedding [Mo], have similar but different signatures. Note 
that Kasner’s flat metric is of AdS type, while Fronsdal’s is of dS type. Fronsdal's 
embedding could be extended to the Kruskal metric [Mo, DP] and carries the same causal
structure as dS. Kasner's embedding is acausal and not extendable. So Kasner's 
embedding is nowadays almost unvalued, but it will become the starting point of our 
common embedding, due to the observations below about the dS/AdS spaces. In this 
article I propose an embedding of Sch (together with a large set of isotropic, static 

1 I use K n , m for an n+m dimensional space and K m
n for an n-dimensional space, 

both with m time-like dimensions.
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metrics) into a manifold M, where the embedding combines Kasner's ansatz with the 
causality of the de-Sitter space and M contains also dS and AdS as submanifolds.
The first aim is now to merge the embeddings of AdS and dS and to look for similarities 
to the embeddings of the Schwarzschild space.

Some Notations are in order:

g ,ds2 is used for a metric (line element)

G  for the Einstein gravitation tensor, without any cosmological constant.

The expression “Newton potential U N  of a metric”, should be understood in the following
way: Writing the form factor of the time coordinate of a metric as g00 :=g tt=1+U one 
gets in the non-relativistic limit, via geodesic equation, the Newton potential U N  as  

               r̈ ≈−Γtt
r
=

1
2
⋅grr

⋅g tt , r ≈−
1
2
⋅g tt ,r ≈−U ,r /2 ⇒ U N ≈ U /2 .

If ( (x i ,i=0 …n) are coordinates in Rd ,(n−d ) , the first three spatial entries are used as 
the usual 3-d spatial coordinates: r=( xd , xd +1 , xd+2) , r :=∣(r)∣ . The scalar product is 
given by  

〈 x , y 〉=∑
0

d−1

x i⋅y i−∑
d

n−1

x i⋅y i

dS and AdS as conic sections and the Schwarzschild metric

(For definition and a set of elementary properties of classical dS/AdS, see Appendix A).
The embedding of classical AdS and dS could be merged in the 6-dimensional flat space
R2,4 as simple different sections of the same hyper sphere, the “light cone” K

 

 Κ={x∈R2,4 : x2 :=〈 x , x 〉=0 } .

One gets dS or AdS as the sections x1
2
=1  or x5

2
=1 , respectively (we use the indices 

2,3,4 for the usual space dimensions). The subspaces could be transformed into each 
other via a simple rotation of the x1 and x5 axis around one of the others (e.g. the x0 -
axis). The radial part of the stationary metrics of dS and AdS reflects this also: For this 
consider the cone x2

+r2
= y2 and constant sections at α

dS:    y=α :⇒ x2
+r 2

=α
2
⇒ dr 2

+dx2
=

dr 2

(1−(r /α )2)

AdS:  x=α : ⇒ α
2
+r2

= y2
⇒ dr 2

−dy2
=

dr2

(1+(r /α)2)

As is pointed out in Appendix B, using equivalent parametrization of K leads to 
qualitatively completely different kinds of metrics for dS and AdS. Circular coordinates 
induce a Friedman-Lemaitre-Robertson-Walker (FLRW) metric on dS, but a stationary 
metric on AdS. Hyperbolic coordinates, on the other hand,  induce the opposite kind of 
metrics, a stationary on dS and a FLRW metric on AdS. This is an example, that the 
metric property, to be stationary or not, is neither a characteristic attribute of the 
geometrical form of the manifold nor of the type of parametrization, it depends on both. 
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So the restriction of a global coordinate system of the embedding space may lead to a 
stationery metric on one  submanifold and an time-dependent on the other one, but this 
features may interchange with another global parametrization. So we can't expect to find
a common parametrization of the searched embedding space M and  certain restrictions 
to get  known  metrics of dS, AdS and Sch.  
As already mentioned, for Sch there exists also an embedding into R2,4 , the Kasner 
embedding, while the embedding space of Fronsdal is R1,5 [Mo]. The geometry of both 
embeddings is difficult and without any further similarities to dS and AdS, in particular it 
is not a submanifold of K and is not projective, while dS and AdS are projective spaces.  

But there is another similarity between the Schwarzschild metric and the stationary 
metrics of dS and AdS. The radial part of the Schwarzschild metric −grr=(1 – r0/r )

−1

comes  from a conic section:

  x2
=4r0⋅(r−r0) ⇒ dr2

+dy2
=

dr 2

(1−(r0/r ))

This conic section arises from x2+r2= y2 through a rotation around the x-axis with 
angle π /4 , followed by a translation r → r−r0 and finally cut at y=2⋅r 0

y→( y−r )/√(2) , r→(r+ y)/√(2)    ⇒  x2
=( y−r )( y+r )→ x2

=2 y⋅r → x2
=4r 0(r−r 0)

Comparing the parameters of the cutting planes y=2⋅r 0  and y=α leads to   

r 0=α/2  (I.1)

A relation of this kind, between r 0 and α , we will get later again. 

II Embedding in a common Space
Due to the considerations in the last section it seems appropriate to restrict M to be a 
hypersphere in R 2,k , k>4 . Using k=5, i.e. seven dimensions, does not lead to 
essentially better results, moreover it is hard to understand why two independent extra 
space-like dimensions and only one time-like dimension should exist. For several reasons
I also think that the number of dimensions must be even  such that a complex structure 
could be defined on it. For k=6, i.e.  eight dimensions, one get the product of two 
Minkowski spaces (or a complexified) . Without any further demands it would be possible 
to embed all three spaces (dS, AdS and Sch) in the flat R2,6 . But for dS/AdS we 
found a light-cone as embedding space and we want to keep this characteristic and we 
write it as

K={(x , y ): x∈R1,3 , y∈R1,3  and 0 = 〈 x , x 〉 +〈 y , y 〉 = x0
2
+ y0

2
−r x

2
−r y

2
}.

r 2:=r x
2
+r y

2 , r x
2 :=∑

j=1

3

xi
2 , r y

2 :=∑
j=1

3

y i
2  (II.1)

Choosing spatial coordinates y i , i=1…3  on a straight line, restricts this cone to the 
light cone in R2, 4 , which we used to embed dS/AdS. For the Schwarzschild space we 
not found neither a similar simple section nor an embedding symmetric due to the two 
Minkowski subspaces.  As such symmetry reasons,  we demand now for the embedding 
of Sch,  that the angles between the two sets of space dimensions should match. But 
then we loose again two degrees of freedom and receive a cone in R2, 3  and so a 5-
dimensional manifold which not could embed a Schwarzschild submanifold. So we extend
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the space again and end up with the 10 dimensional space R2,8 . The space is now the 
product of two classical Kaluza-Klein spaces. We have the decomposition 

R2,8
=R1, 4

∘R1, 4

and start with the ansatz,

M={(x , y ): x∈R1,4 , y∈R1,4  and 〈 x , x 〉+〈 y , y 〉=−α2 }.  (II.2)

Kaluza-Klein theory postulates a S 1 submanifold so we conclude with II.1

ρ
2:=x 4

2
+ y4

2 , −α
2
=〈x , x 〉+〈 y , y 〉= x0

2
+ y0

2
−ρ

2
−r2

=−ρ
2  (II.3)

So the diameter of the Kaluza-Klein sphere is constant and equal to the size of the space.
In the following we use normalized coordinates, i.e. a curvature radius α=1 ⇒ρ=1 . 
In a stationary, isotropic metric this means that time and radial parameters are 
measured in multiples of α .
The restriction that all angles between the corresponding x- and y-space dimensions 
should be equal we express via

x i=r i cos (ϕ) , yi=r i sin (ϕ)  for i=1,2 ,3 .

Using spherical coordinates for the space dimensions and x4=ρ cos (β) , y4=ρsin (β)  for
the Kaluza-Klein, the metric becomes

ds2
= dx0

2
+dy0

2 – dr 2
−r2 d ϕ

2
−r2 d Ω−d ρ

2
−ρ

2 d β2

     = dx0
2
+dy0

2 – dr 2
−r 2 d ϕ

2
−r 2 dΩ−d β2  . (II.4)

To obtain an embedding for the Schwarzschild space we set

x0=r cos(ω) , y0=r sin (ω)  and get 

ds2 = r 2 dω2−d β2−r 2 d ϕ2−r 2 dΩ  (II.5)

Let's now choose the following embedding

ω=κ sinh(t ) ,ϕ=κcosh ( t) , κ=a /r
and receive

ds2
= a2 dt 2

−r2 d κ
2
−d β

2
−r 2 dΩ

     = a2 dt2
− f 2 dr2

−d β2
−r2 d Ω , f :=r

d
dr

a
r
=

da
dr

−
a
r

 

(II.6)

Summarized the complete parametrization is

x0=r cos (κsinh (t)),       y0=r sin (κsinh( t))
xi=r cos (κ cosh (t))⋅σi ,  y i=r sin(κ cosh (t))⋅σi  for i=1,2,3
x4=cos (β) ,                      y4=sin(β)

(II.7)

where σi are the usual spherical unit coordinates (and κ=a /r ).
Comparing the metric above with a “target” metric of the general kind
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ds2
= a2

(r )dt2
−b−2

(r )dr2
−r2 d Ω  , (II.8)

leads the equation

β ' 2 = b−2− f 2 ≡ b−2−(a ' – a /r )2 =: m2 ,    (a ' :=da /dr ) . (II.9)

It has a solution for b2≥0  if also m2≥0  or

1≥(b⋅(a ' – a /r ))2.  (II.10)

This embedding provides a wide class of stationary metrics, including Schwarzschild - De-
Sitter metrics, that are metrics with 

−g rr
−1
= b2

= g tt = a2
= 1+V =−r0/r+λ r2

⇒ κ2=(1−r0/r )/ r
2+λ , b⋅(a ' –

a
r
)=

V '
2

−
(1+V )

r
=

1
r
(
3 ro

2 r
−1)

 . (II.11)

Here the additional curvature constant λ appears, but has no influence on II.10 (and  
not on II.12 below) , as we see with the help of the last formula.. But a second, arbitrary
curvature constant (we have already the global α ) needs to be explained again in 
some way and so we set just λ=0 . 
The relation II.10 now simplifies to

r≥∣( 3
2
⋅

r0

r
−1)∣  . (II.12)

Setting r 0=0 one gets the first result r≥1 , that is: Even for the flat target space the 
considered embedding has a gap at the origin of the coordinate system. So the 
embedding  implies a natural minimal structure of the space with size 1, that is the size 
of the global curvature α . 

So we     assume that α is of the size of a   Planck   length   !

We will not need and use, how small α exactly is and it is enough to know, that it is 
very small at any macroscopic scale. So even if we would assume α=1020 , the radius

r=1 would correspond  just to the diameter of a proton and would be highly accurate 
negligible compared to terrestrial or larger distances.
We claim that II.12 should hold for all values of r , where also a2

≥0 holds and 
obtain, inserting r=r 0 in  II.12, r 0≥1/2 as a necessary condition.  Further,  simple 
dividing and subtracting  the relation r≥r 0≥1/2 results in

1/2 ≥
3
2
⋅

r 0

r
−1 ≥

3
4r
−1=−r+

(r−1/2)2+1/ 2
r

≥−r and with r≥r 0≥1/2 in

r≥
3
2
⋅

r 0

r
−1 ≥−r which is II.12 . Only for r 0≥1/ 2 could the Schwarzschild space 

Sch be entirely included in this model. Again we found the value r 0=1/2 as already in
II.4.  But for r 0/r≤1 the right hand side of II.12 is always less than one and so the 
inequality is fulfilled if  

r ≥ r0 ≥ 1/2  or r ≥ max(1,r 0) . (II.13)

In the Newtonian limit one derives r 0=2⋅mass (see e.g. [St]) . Applying this to the 
inequality r 0≥1/2 says, that our model  keeps valid for masses of size larger than the 
Planck mass . This is small enough for any macroscopic considerations.
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For a2
=b 2

= 1+V one has

β ' 2
= m2

≡
1

a2
− f 2

=
1

a2
(1− f a

2
)

f a :=a⋅ f =(
−1
r

+(
1
2

d
dr
−

1
r
)V ) =−

1
r
(1+V−

r
2

dV
dr

)

 
(II.14)

and so, for the Schwarzschild – de-Sitter metrics,  the phase β of  Kaluza-Klein's S1  
is given by the integral (for completeness we also keep λ here)

β=±∫ dr
r √ r2

−(1−3r0/2r)2

1−r 0/r+λ r2
 (II.15)

As for the Kasner and Fronsdal embedding, this last primitive could not be explicitly 
presented, but it behaves well for all values, where the real square root in the integrand 
is defined.
Extending to a complex space, β  is defined everywhere. It just becomes imaginary 
and so the radius of the Kaluza-Klein dimension now decreases/increases (depending on 
the sign in the last formula). We may also use this embedding to get dS and AdS. For 
those we get , with  a2

=1∓r 2
⇒ f 2

=(ar )−2
⇒m2

=a−2
(1−r−2

) , a negative m2  for
r<1 . So for AdS we have the same critical distance r=1  as for Schw. But for dS 

the expression m2
=−r−2

<0  is everywhere negative and so the phase β=±i ln(r )  

complex, which leads to a non constant radius of the KK-dimension ρ=r±1 .

For r 0≥1/2 the sign of m2 is positive for all r>r 0 . Beyond r 0 it first turns 

negative, but because a2
<0 for 0≤r<r 0 and lim

r→0
f a

2
=∞ the sign of m2 becomes 

again positive near the origin at r=0 . The region of negative m2 (or regions) form a
shell (or shells) around the origin. 
If xμ(t 2)= xμ(t 1) and yμ(t 2)= yμ(t1) for constant r≥r 0 and κ

2
= (1−r 0 /r )/r

2
≠0 , 

we have sinh(t 2)=sinh (t 1)+2lπ/ κ and cosh (t 2)=cosh(t 1)+2n π/κ with l , n∈ℕ . 
This induces t 1=t 2 , l=n and  therefore, with increasing parameter time, the path on 
M never reaches the same point again. The embedding is causal in this sense. 
The phase factor κ has a maximum at r = 3 /2⋅r 0 and κ(r0)=κ(∞)=0 and so
∀ra : r0<ra<3/2r 0 ∃ rb>3 /2r0 : κ(rb)=κ(r a) . The complex coordinates uμ=xμ+iyμ

on the light cone subspace ( (xμ , yμ) ,μ=0…3 ) of M at (t , r a)  and (t , r b)  have 
the same phase and only differ in their “amplitude”. Further, on a sphere r=constant , 
with increasing parameter time, the time and space dimensions oscillate, like ordinary 
waves. Not so the Kaluza-Klein dimensions, which only depends on r .  At the event 
horizon ( κ=0 ), the oscillation is frozen. Passing through this singularity, the 
oscillation starts again, but in the opposite sense. The time and radial part of the 4 -D 
metric changes sign and the radius of the Kaluza-Klein S1  – sphere  decreases with 
decreasing r . At r=0 , all dimensions, without the Kaluza-Klein one (the whole 
space-time), shrink to zero size.
The phase β in this section is selected in such a way that the initial metric becomes the
desired target space. But without this, there is no reason that β only depends on the 
radial coordinate. In the next section we  will examine a modified phase β .
We finally give another interpretation of equation II.9 for the flat Schwarzschild space. 
For this we write the equation as 
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d β
2
+(

dr
r
)

2

=dr2 , which results with r=cosh y and d Φ :=
dy

cosh ( y ) in

d β
2
+dy2

= dr 2
+dΦ2 . (II.16)

The function Φ(ξ)=gd (ξ)=∫
0

ξ
dy

cosh ( y)
=atan (sinh(ξ)) , “which   arises in the inverse 

equations for the Mercator projection, and which expresses the latitude Φ(ξ)=gd (ξ) in
terms of the vertical position ξ on the Mercator map” (Wolfram.com).
Since cosh (ξ) = sec(Φ) := 1 /cos (Φ) we may write also r=sec(Φ) .

The right hand side of II.16 just describes some unusual kind of latitudinal distance 
measure on the globe, and the left hand side the corresponding length preserving 
measure on the Mercator map. For small latitudes with Φ≈tanΦ we have the relation

Φ
2
+r 2

≈1 and with d β
2
=(1− f 2

)dr 2
=sin2

(Φ)dr2 , we see that d β measures the 
radial distance, weighted with the sine of the latitude d β=sin(Φ)dr .

III Extended Schwarzschild Metrics

III.1 Preliminary remarks 

Before considering modified manifolds, which arise from the change of the phase β in 
the last section, we review some general facts. For this we first review the concept of the
“proper length” or “proper  distance”. In special relativity the “proper length” is the 
length with respect to the rest frame of the object, which is measured. Consequently the 
proper distance between two objects has to be measured in a frame, where both objects 
are at rest, regardless if they have a relative movement to each other or not. This is the 
frame of a static or stationary observer. So for example, the proper distance sun-earth is
one astronomical unit, even if a satellite traveling from earth to the sun measures a 
different distance. For a general static (radially symmetric) metric

ds2
= g tt dt 2

+grr dr 2
−r 2 dΩ  (III.1.1)

http://mathworld.wolfram.com/Gudermannian.html
http://mathworld.wolfram.com/Gudermannian.html
http://mathworld.wolfram.com/Gudermannian.html
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the proper distance l is given as l : dl 2
=−grr dr2 [MT,G] and is the negative arc 

length −ds2 of the space-like distance at synchronous time ( dt /ds=0 ). Besides the 
proper radial distance we have for the radial velocity as a static observer measures,

vS
2
=g tt

(
dl
dt
)

2

, g tt :=g tt
−1

 (III.1.2)

[MT,Oi]. Using these relations, a straight line element( d Ω=0 ) is just

ds2
= g tt(1 – vS

2
)dt 2  . (III.1.3)

If g tt is constant (let use 1 without loss of generality) , this is just the line element of 

special relativity. Moreover for light-like geodesics we get dt 2
=−g rr dr2

=dl 2 and so

vS
2
=(dl / dt)2=1 . So for the static observer, who measures time and length, anything 

looks just like special relativity, despite that the space is not flat. We will call this type of 
metrics and spaces  “almost flat” (AF). But of course there are differences to a flat 
space; for example measuring the circumference of a circle centered at r=l=0  , 
which is 2r π and not 2l(r )π . Another difference is that the Einstein tensor, and so 
via Einstein equation the energy – momentum tensor, generally does not vanish.

With the results in [Dr 8.31 ff] and −grr :=Q2, g tt=1 one arrives at

G0
0
=

1
r 2

d
dr

(r (Q−2
−1)) , G r

r
=
(Q−2

−1)
r 2 , G2

2
=G3

3
=

1
2r

d
dr

(Q−2
)  . (III.1.4)

From this immediately follows G0
0=∑

j=1

3

G j
j , which is, if all components are positive or 

zero the strong energy condition [G]2  

 G0
0
≥0 ∧ G0

0
≥G j

j
∀ j=1,2,3 ∧ G0

0
≥∑

j=1

3

G j
j  ,

which is interpreted as an indication for “ordinary matter” [G,MT] . Conversely, if all 
components are zero or negative, we get G0

0
≤0, G 0

0
≤G j

j
∀ j=1,2,3 and so G    

lacks any energy-condition. A metric, which looks like a SR-metric, usually is a vacuum, 
so it should not look like a metric with matter. In a vacuum there is nothing we can 
identify with positive energy. So we only accept AF metrics, if the Einstein tensor does 
NOT fulfills any energy-condition. We call these last inequalities 

G0
0
≤0 ∧ G 0

0
≤G j

j
∀ j=1,2,3 ∧ G0

0
≤∑

j=1

3

G j
j

the “vacuum energy condition”. Further we expect that asymptotically the vacuum 
should become a vacuum in the normal sense, that is G vanishes at infinity, which also
implies that the space is asymptotically Ricci-flat ( G=0⇒ tr (G)=0⇒ tr (Ric)=0 ). This 
condition is weaker than the common “asymptotical flatness”, which means that the 
metric tends to a Minkowski metric at spatial infinity.     
Let's make the following definition:

Definition: 

2) Note [G] uses upper lower indices with respect to the Minkowski metric ηij and so 

his energy-momentum tensor is T ij=ηil G j
l !
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A vacuum is a domain in space-time, where the metric is almost flat and the vacuum 
energy condition holds with lim

r →∞

G (r )=0 . In a stronger form of the definition, we 

demand additionally G≤0, i.e. G j
j
≤0 ∀ j .

Sometimes space-time domains, which fulfill no energy condition, are called “exotic 
matter”. We do not use this terminology and/or interpretation in the following.

We now return to the geodesic equations. With g tt=b2
(r ) , −grr=Q2

(r )/b2
(r ) , the 

Lagrange function associated with the metric III.1.1 is

L = b2 ṫ 2 – (Q /b)2 ṙ 2
−r 2

(θ̇ 2
+sin2

(θ )ϕ̇ 2
)  . (III.1.5)

The dot (e.g. in ṙ ) denotes the derivative with respect to an affine parameter σ
along the geodesic, where for time-like geodesics σ could be identified with the arc 

length (or the eigentime). So from ds2
=( gμ ν ẋμ ẋν

)d σ
2 , L =gμν ẋμ ẋν one gets for 

time-like geodesics, using σ=s , L = const. = 1 and with ds2=0 for light-like 

(null-geodesics) L = 0 [St]. The geodesic equations for the angular and the time 

parameter have the known standard form and solutions θ=π/2, r 2ϕ̇ = M = const. and

b2 ṫ = A= const and one gets the equation

A2

b2 – Q2 ṙ 2

b2 −
M 2

r 2 = L , L=0,1. A2
≥1

 .
(III.1.6

This equation is a necessary condition for the radial Euler-Lagrange equation to hold and 
for ṙ≠0 it is also sufficient (proven by differentiating with respect to the parameter 
along the curve). So for ṙ≠0 it can be used instead of the radial Euler-Lagrange 
equation. For radial geodesics through the origin ( M=0 ) one gets Q2 ṙ 2

=A2
−L b2 . 

Inserting this equation into III.1.2 one obtains

vS
2
=b−2

(
dl
dt
)

2

=
1
b2 (

Q
b

dr
d σ

d σ

dt
)

2

=Q2 ṙ 2

A2 = 1−L b2

A2  . (III.1.7)

For light-like geodesics ( L = 0 ) one again arrives at vS
2
=1 , but now for any 

function b2(r ) , and we can use σ=t and therefore A=1 . For time-like geodesics (

L =1 ), the last equation defines A via A2
=b2

(1−vS
2
)
−1 . Inserting this  again in

III.1.6 with M=0 leads to Q2 ṙ 2
= b2

(1−vS
2
)
−1 vS

2 and so summarized:

Q2 ṙ 2
=

b2 vS
2

(1−vS
2
)
=

1
(1−vS

2
)
(
dl
dt
)

2

, Q2
(

dr
dt
)

2

= b4 vS
2
= b2 vS

2
(

dl
dt
)

2

 . (III.1.8)

If lim
r →∞

Q (r )=constant and lim
r →∞

b(r)=constant we determine A2 in  III.1.7,  by 

defining initial conditions ṙ=0, for r→∞ , and have for time-like geodesics

A2
=lim

r →∞
b2
(r )  (III.1.9)

(for light-like geodesics this initial condition makes no sense, we have always A2
=1 ).
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Next we  look at circular geodesics, that is at geodesics with ṙ=0 . From III.1.5 one 

gets for the resulting radial Euler-Lagrange ∂ L/∂ dr=0 equation
A2

b4

db2

dr
=2

M 2

r3 and 

after applying III.1.6 

(L +M 2

r2 )
db2

dr
=2 b2 M 2

r3  . (III.1.10)

The equation immediately shows that for AF spaces ( b2
=1 ) no circular geodesics 

exists ( M has to vanish), as they don't exist for usual flat spaces . We now look at a  
metric with b2

=1−rh/r , rh≥0=constant , which for r h=0 is a vacuum as defined 

above. Any metric of this form is for r h=0 an AF metric, but not necessarily a 
vacuum.  The parameter r h is the event horizon of the metric in the same meaning as 
for standard Schwarzschild spaces. For r → r h time dilation dt /ds becomes infinite and
behind it one has ṫ<0 (“time moves backward”) and the metric changes its signature. 
For such kind of metrics, the limit value in  III.1.9 is A2

=1 and III.1.10 becomes 

(L r2

M 2+1)
rh

r
=2(1−

r h

r
)
L =0

⇒
rh

r
=

2
3

⇒b2
=

1
3  . (III.1.11)

Inserting this in  (III.1.6 we get for circular null - geodesics ( L =0 → A=1 ) 

M=
r
b
=

3
2
√3 r h ,

d ϕ
dt

=
M
r2 =

2
√3 rh

, E M :=
M 2

r 2 =3 (III.1.12)

and  we have with III.1.7 and A2
=1 for straight timelike geodesics, passing trough the 

origin ( M=0 ) with the boundary condition ṙ=0, for r→∞

vS
2
= b−2

(
dl
dt
)

2

= (Q ṙ )2 =
rh

r
 ( vS

2
=(Q ṙ )2=1 for light-like). (III.1.13)

Inside the event horizon 0<r<r h ⇔ b2
<0 we have vS

2
>1 and dl /dt becomes 

imaginary.  At r=r h , dl /dt is zero, whereas dl /dr=Q2/b2 goes to infinity, if

Q2
(r=rh)≠0 . The “concept” of proper length lacks inside the event horizon. For this, 

the area r<r h is a gap or a single point. 

We now consider the Newton limit ( r h/r≪1 ) of our equations for time-like curves. For

III.1.11 we receive the familiar result r h/2=M 2
/r for an orbit around a mass of r h/2

and anything looks as usual. But  the constant M 2 is undetermined. Differentiating of  
Equation III.1.13, the straight geodesics through the origin, leads to

d vS

dt
=

d 2 l
dt 2 = Q

d 2 r
dt2 +

dQ
dr

vS
2

Q2 =−
rh

2Q
⋅

1
r 2 =−

vS
2

2Q
⋅

1
r

Q
d 2 r
dt 2 =−

rh

2Qr2 (1+r
d log(Q2

)

dr
)

 . (III.1.14)

If we assume that ∣vS∣≪1 and r∣d log(Q)/dr∣≪1 and so also l≈Q r , we get
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d 2 l
dt 2 ≈−Q

r h

2
⋅

1
l 2 ,

d 2r
dt 2 ≈−

rh

2Q2⋅
1
r2 . (III.1.15)

We have now different mass factors  i.e Newton equations as for a mass of Q∞
−2 r h/2 or

Q∞r h/2 , respectively and both factors differ from the Newtonian factor r h/2 . This is
a consequence of the nature of grr and hence of the vacuum. −grr does not become 
one in the Newton limit (of large r ) , and consequently the proper length dl=Q dr.
will not match with the parameter length. So even for the velocities in the vacuum we 
get in the newton limit vS=dl /dt≠dr /dt . 
The concept of the proper velocity carries some practical difficulties. An observer on the 
earth measures the distance to objects in its galactic environment in terms of the proper 
length, but it is a geodesic observer and not a static one. If he looks at extra-galactic 
objects, he may be  concerned as static, but now he is also outside of the gravitational 
effects of this objects and not be able to determine the proper distances between them. 
In both cases, he can't determine the velocity vS . The difference in the forces may be 
seen as consequence of the different distances in the two coordinate systems.

As for the usual Schwarzschild metric, we can define a coordinate transformation into the
coordinate system of a geodesic observer [St] and receive an associated LeMaitre-metric

dT = dt+√ r h

r
Q2

b2 dr , dR=dT+√ r
r h

dr=dt+√ r
rh

Q2

b2 dr

ds2
= dT 2

−
r h

r
dR2

−r 2 dΩ

 (III.1.16)

The differential equations have the solutions

T=t+∫√ r h

r
Q2

b2 dr , r=((R−T )
3
2
√r h)

2 /3

.

In this coordinate system, the metric is exactly the same as in the common theory. The 
difference to the Schwarzschild space is absorbed in the time parameter T .

III.2 Non stationary metrics.

We start again with metric II.6 but rename t → τ ,

ds2 = a2 d τ2 – f 2dr 2−d β2−r2 d Ω  , (III.2.1)

and consider a general phase β(τ , r ) and a coordinate transformation (τ , r )→( t , r )
such that the metric is diagonal.  We not transform the radial coordinate, so the surface 
term r 2 dΩ remains unchanged and the metric keeps comparable to common radial 
symmetric metrics. As this reason the surface term plays no role in the following 
calculations and we omit witting it. Further we  will restrict us in the following to the 
standard Schwarzschild scale factor a2

=1 – r0/ r =: 1−x . Now with 
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d β = ωd τ−m dr   =    Edt−P dr ,
ω :=∂β/∂ τ ,                  m :=−∂β/∂r ,
E :=∂(β∘ τ)/∂ t=ω τ , t , P :=−∂(β∘τ)/∂ r=−ω τ , r+m

 (III.2.2)

we receive the metric and the conditions

ds2
= (a2

τ , t
2
−E 2

)dt2
− (P2

+ f 2
−a2

τ ,r
2
)dr 2

=: b2 dt 2
−q2 dr 2

a2
τ , t τ ,r =−PE , E ,r =−P ,t , τ ,r , t = τ ,t , r .

(III.2.3)

For E≡0⇔ω≡0 this is just the same task as we already considered  in section II and 
so we assume that E does not identically vanish. First also assume, that E depends 
only from t . With the ansatz τ ,t=α E , α=const ⇒ ωα=1 . τ now separates into 
a sum of type τ=u (t)+v (r ) and the new metric scale factors become

b2
=(a2

α
2
−1)E 2 , q2

=P2
+ f 2

−a2
τ ,r

2
= P2

(1−α−2 a−2
)+ f 2 .

Now E2 can (and have to) be absorbed in the time coordinate E dt →dt by a simple 

integration or expressed in this final time parameter just as E2
=1=β ,t

2 . With α
2
=2

we receive b2
=(1−2 r 0/r ) , q2

= P2
(1−ω2

/a2
)+ f 2 , where P  could be an arbitrary 

function of r since 0=E , r=−P ,r . Using

P2=(b−2− f 2)/(1−ω2 /a2) (III.2.4)

we end up with the Schwarzschild metric 

ds2
=b2 dt 2 – 1/b2 dr 2, b2 :=1−2r 0/r . (III.2.5

Combined with the case E=0 we have the metric factor

b2
=1– r 0/r (1+E2

) , E2
=0,1 , ω

2
=0,1/√2 . (III.2.6)

Together and a bit more generally, we used the transformation

τ=t√(1+E2)+v (r) , β= Et−h(r )= ω τ−(h(r )+ω v(r )) with 

ω
2
=

E2

1+E2 ⇔E2
= ω

2

1−ω
2 , τ ,t

2
=1+E2

=
1

1−ω2 , h'=P ,v '=−ω P /a2
. (III.2.7)

That h and β becomes real we need P2
≥0 . Writing

P2
=

a2

b4

A2

1−ω2 , A2:=1−b2 f 2
= 1−

b2

r 2 a2 (
3
2

x−1)
2

(III.2.8)

leads to the inequalities b2
≥0 and A2

≥0 .  We extend the first inequality, b2
≥0 , to

an analogous of II.13

r ≥ 2r 0 ≥1 . (III.2.9)
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Since in this region b2
≤a2 and (3/2 x−1)2≤1 holds, A2

=1−b∞
2
/a2

(3/2 x−1)2/ r2 is

also indeed always positive. Since 1≥A2≥1−(2r )−2 we have moreover for macroscopic 

distances almost exactly A2
=1 (see the remarks near II.12 and II.13) .

The term (1+E 2
)r0 instead of just r 0 in b2

=(1+E2
)r 0/r not necessarily means, 

that the gravitational force is (1+E 2
) times higher as in the common theory. If we 

have no other space regions, with a different factor to compare, we  have to gauge now 
also our physical constants with, (1+E 2

)r0 which is, that we have to multiply r 0 in 

the standard theory with the factor (1+E 2
) and hence will get just r 0=mass instead 

of r 0=2 mass . But if we have two regions in space-time with distinct values of E2 , 
we will get different forces, i.e gravitation constants. One may get  a such one, if setting
β=Θ(t) t−h (r ) (where Θ is the Heaviside function) , but then we will get a 

discontinuous time τ = t+Θ(t)(E2
+v (r)) . Below, we will provide a solution with a 

continuous time τ . But first we introduce a simple particle picture. The equation
d β = E dt−P dr is the Hamilton-Jakobi equation for the action S=−β [Gs],

∂ S
∂ t

=−E ,
∂ S
∂ r

= P ,
dS
dt

=−E+P ṙ = ℒ , (III.2.10)

with Lagrange function ℒ . So also ω is the energy density and m the momentum 
density but in the original coordinate system (see  III.2.2). Originally we introduced β
as the phase of the Kaluza-Klein dimension ( II.7) . In  complex notation the Kaluza-Klein
dimension may be written as z=eiS

≡e−iβ , and from this we have

i
∂ z
∂ t

= E z , −i
∂ z
∂ r

= p z . (III.2.11)

So any related characteristic equations may be interpreted as the equations of motions of
some “strange” particle. 
Now continuing to look for a more general solution of III.2.2, III.2.3. We start with the 
ansatz III.2.7, but for arbitrary E . Obviously we have 0≤ω2

<1 , which leads to a 
Lorentz signature in the constant case above. The sign of E or ω is indeterminate 
and we choose it to be positive. We now get

τ ,r =−a−2
ωP ⇒

∂
∂ r

ω

√1−ω
2
=−P , t , ∂

∂ r
1

√1−ω2
=−a−2

(ω P),t
. (III.2.12)

Since 1=1/(1−ω2
)−ω

2
/(1−ω2

) , a linear combination of the last two equations leads to

a2
ω P ,t = (ω P), t ⇒−x P ,tω=ω ,t P with the general solution

ω=ωa(r )∣P∣
− x

, ⇒ P=±(
ωa(r )
ω )

r /r 0

for r0>0,ω>0 . (III.2.13)

with so some arbitrary function ωa (r ) . If r 0=0 this means, that ω must be time 
independent and so also P , t and hence P=u (r ) t+v (r ) . But the last equation in
III.2.12 then leads to u=0 and therefore P , t=0⇒ω=const . So we  have as a first 
result, that
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for r 0=0 only a solution with constant ω exists. (III.2.14)

In general we now get with III.2.12and III.2.13 the first order PDE,

E , r =−P , t =−
∂ P
∂ E

E , t ,
∂P
∂E

=
∂ P
∂ω

∂ω
∂E

=
−rP
r0ω

⋅
1

(1+E2
)

3/2
=

−r P

r 0 E (1+E2
)

 (III.2.15)

which implies that E (and so ω ) is a conserved quantity along the characteristic

P v :=P
dr
dt

= −
rh

r
E , rh :=

r 0

1−ω2 ≡ r0(1+E2
)  (III.2.16)

To determine the arbitrary function ωa (r ) in  III.2.13 we have a look at the scale 
factors. They have the equivalent form as in the constant case above

 ds2
=b2 dt 2

−q2 dr 2 , where

b2
=1−

1
r

r 0

1−ω2 , q2
= P2

(1−ω2
/a2

)+ f 2
= P2 b2

a2 (1−ω
2
)+ f 2

(III.2.17)

Assume that we have a solution with lim
t→∞

ω=ω∞>0, ω∞=const. then

b∞
2
=1−

1
r

r0

1−ω∞
2 , q∞

2
= P2 b∞

2

a2 (1−ω∞
2
)+ f 2

= (
ωa(r )
ω∞

)
2r / r0 b∞

2

a2 (1−ω∞
2
)+ f 2 .

To obtain the Schwarzschild metric in this limes, we set q∞
2
= b∞

−2 and get

P2
=(b∞

−2
− f 2

)(
ω∞
ω )

2r / r0 a2

b∞

2 (1+E∞

2
) , q2

=(b∞

−2
− f 2

)(
ω∞
ω )

2r / r0 b2

b∞

2

(1+E∞
2
)

(1+E2
)
+ f 2 . (III.2.18)

Now the characteristic equation is completely defined and could be principally integrated 

∫
r A

r

r ' P (E ,r ')dr ' = −r h E t . (III.2.19)

Solving this equation for r A  we get the solution of the PDE with initial values ω0(r )
due to solving ω=ω0(r A) . We now have to analyze, for which values or the time 

parameter a unique solution exists and that we can recover lim
t→∞

ω=ω∞>0 .We further 

expect and demand E , t≤0 and since E , t=−v E ,r=
r h

r

E E , r

P
this is

sign(E2
), r=−sign P , (III.2.20)

and because we defined E≥0 it's equivalent to sign E ,r=−sign P . For outgoing 
solutions we have v≥0 and hence P≤0 and E , r≥0 and for inward directed the 
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opposite signs. This relations specially have to hold for the initial values at t=0 , which 
we have so to choose  in this way.
For ω∞ we  select one of the two values 0, 1/2 , which we received in the stationary 
case and since we want ω∞>0 we only have ω∞

2
=1/2 . So the parameters are.

b∞
2
=1−

2r0

r
, P=±√2(

1
2ω2 )

r /2r0 a
b∞

2 A ,

q2
=(

1
2ω2 )

r / r0 b2

b∞
4

2A 2

(1+E2
)
+ f 2 ,  with A2:=1−b∞

2 f 2
(III.2.21)

As above P keeps real iff III.2.9 holds. Now we put ω=ω0(r A) into III.2.19 , which 
implicit defines some function r A=g A(t , r ) , which we  simply just also denote with

r A( t , r ):=g A(t , r) , and so an equation of type G(r , r A(t , r ))=0 . We build the 
partial derivatives of this equation with respect to t and r and get

r A, r⋅(−P (E , r A)+G (r , r A , t)) = −Pr , r A , t = −v r A , r

G (r , r A ,t ) := E ' 0(r A)(∫r A

r

r '
∂P (E , r ' )

∂ E
dr '+t

d (rh E )

dE ) =

                      = E ' 0(r A)(−∫r A

r

(r ' )2 P dr '

r 0 E (1+E2
)

+ r0(1+3 E2
)⋅t)

. (III.2.22)

Now we receive v>0 , r A ,t<0, r A, r>0 for r≥r A>2r0 , if we choose for P the ne-
gative sign and, applying III.2.20, E0 ≥0 . This proves the uniqueness of  the solution 
(if there is one), because for any finite (t , r ) exists (at most) exact one starting point

r A at t=0 . For incoming waves P>0,ω0 '<0 we can't draw this conclusion, be-
cause the middle term ω0 '⋅dP / dE in the brackets above is always positive and have for

P>0 the opposite sign of the two other one. So in the following we will restrict us to 
the case of outgoing waves and have (for r≥2r 0, t>0

E≥0, P=P=−√2(
1

2ω2 )
r /2r 0 a

b∞
2 A≤0, E ,t≤0, E ,r≥0, P ,t≥0, P , r≤0,

v≥0, v , t≤0, v , r≥0,  since d v /d ω>0
. (III.2.23)

At r=2r 0 the amount of the momentum P becomes infinite and hence v=0 . The 
characteristic starting there is the curve r=2r 0, parallel to the time axis and hence
ω=ω0(2r 0)=ω∞=1/2 along it. Now we have to show, that we receive any point in the 

area t>0,r>2r 0 . For microscopic masses of size 2 r 0≪1 , we get the problem of a 
vanishing A2 near r=1 (see below III.2.8 ) . We will shortly discus this at the end. To
sketch a proof for the existence of a solution for all t>0 , we now restrict us to macro-
scopic masses and distances r≥2r 0≫1 and so A2

> const >0 holds. Moreover we can
set with high accuracy A2

=1 and the terms in III.2.18 become

P2
=2 b∞

−4 a2
(2ω2

)
−r / r0 , q2

=2 b∞
−4
(2ω2

)
−r / r0(a2

−ω
2
)+ f 2 , b∞

2
=1−2r 0/r (III.2.24)

and the characteristic equation therefore
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rh E t = I (r , r A) := √2∫
r A

r

r ' exp(−λ r ' /2r0)
√1−r 0/r '

1−2r0 /r '
dr '

    = η⋅(2r0)
2⋅J (r , r A) := η⋅∫

r A

r

r '
exp(−λ r ' /2r0)

1−2r 0/r '
dr '

 λ :=log(2ω2
) , 1≤η≤√2, r≥r A>2r0

. (III.2.25)

The integrand III.2.25 is singular of type 1/r at b∞=0⇒ r=2r0 and hence the integral
diverges there.  On the other side for large r A (and r>r A ) the integrand get the 

form r exp (−λ r ) and I (∞ , r A)≈ (λ r A+1)exp(−λ r A)/λ
2 exists. This means, for

r →∞ all characteristics become straight lines parallel to the r-axis  i.e. they ending at 
some finite time t . If I (∞ , r A)=rh E t have a bounded solution r A( t)<∞ , than 
we conclude from r A ,t<0, r A ,r>0 ( III.2.22), that

lim
t→∞

lim
r→∞

r A( t , r )= lim
r→∞

lim
t→∞

r A(t , r ) = 2r 0 . (III.2.26)

To be a bit more precise: J (r , r A) could be explicitly calculated as

J (r , r A)= ∫
Y A

Y (r )

( y+2+ y−1
)e−λ( y+1)dy , Y (r )=

r
2r 0

−1, Y A=Y (r A)

              = e−λ (Ei (−λ y)−λ−2
(( y+2)λ+1)exp(−λ y))|Y A

Y (r )
⇒

J (∞ , r A)=−e−λ (Ei (−λY A)−λ
−2
((Y A+2)λ+1)exp (−λY A))

. (III.2.27)

Now J (∞ , r A)≥0 (because Ei (− y)<0 for all y>0 ) and λ depends from the 
initial values and so from r A . Since we defined ω∞=ω0(r A=2r0)=1/2 , we conclude 

monotone increasing initial values with range ω∞
2
=1/2≤ω0

2
≤1 and therefore

0≤λ=log (2ω2)≤√2 and λ increases monotone with r A . We rewrite the last 

equation I (∞ , r A)= η(2r0)
2 J (∞ , r A)=r h E t=2r0 E (1+E2

)t as 

t
2r0

= η
J (∞ , r A)

E (1+E2
)

. (III.2.28)

Since from monotony we have r A →∞ ⇒Y A →∞ for ω →1⇔λ → √2⇔E 2
→∞ the 

factor J (∞ , r A) at least keeps finite for ω→1 and hence t=0 is the only solution for
ω→1 . This implies , that for t>0 we always have ω<1 and therefore r A ,Y A and
E are  bounded . For ω

2
→1 /2⇔λ →0 also Y A tends to its minimum

Y A=0, r A=2 r0 , therefore J (∞ , r A)→1/λ2 and III.2.28 becomes

t
2r0

=
η

2
J (∞ , r A→2r0) →

η

λ
2
→ ∞

and proves that indeed also lim
t→∞

lim
r→∞

r A( t , r )= 2r0 holds. The singularity at r=2r 0

guarantees, that we receive a solution everywhere in [t≥0]∩[r≥2r0] .
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Now we  present a, in some way “natural”, candidate for the initial values of the desired 
kind, i.e. strictly monotone increasing with ω∞

2
=1/2=ω0

2
(r=2r0)≤ ω0

2
≤1 .

ω0
2
= a2

= 1−r0/r , ⇒ E0
2
= r /r0−1 . (III.2.29)

With these initial values, we have at t=0 the pure three-dimensional metric

b2
=0, q2

= f 2
⇒ ds2

=− f 2 dr 2
−r 2 dΩ , (III.2.30)

where even the radial dimension is  iny of size r−2 and so we have almost the metric of
a two-dimensional sphere ds2

=−r 2 dΩ . For large r the proper length for III.2.30 

becomes dl=r−1 dr ⇒ l = log(r ) , r=exp(l ) and so even extreme large radial distances
become very small in terms of it.  III.2.29 can be derived from a flat Minkowski metric

ds2
=dt 2

−dr 2
−r2 d Ω

where the time coordinate is bound to the radial through dt 2
=(1− f 2

)dr2 . This relation

is, if setting t=β , identical, to the one we found in II and becomes  II.16 for r 0=0 .

For t →∞ we get from construction b2
→b∞

2
=1−2r 0/r , q2

→b∞
−2 , i.e the Schwarzschild

metric. Since 1> lim
r →∞

ω
2
> 1/ 2  for any time t>0 we have also lim

r →∞
b2
→1 . Further 

we conclude for small r 0/r from III.2.24

P2
≈2(2ω2

)
−r /r 0 , q2

≈2(2ω2
)
−r / r0(1−ω2

)+ f 2 ,

b∞
2
=1−

2 r0

r
, b2

=1−
(1+E2

)r 0

r
=1−

r A

r

 

(III.2.31)

Since q2 decreases  exponentially as r →∞ , we receive q2
→ f 2

→0 , b2
→1 . The 

same holds also on any characteristic curve C A through r A>2r0 . Generally b2
→1

holds on any curve C , with ṫ :=dt /ds≥0, ṙ :=dr /ds>0 but not q2
→1 . The curves

Cq along which dq2
/dt=0 holds, divide the local space into two regions. On a curve

C , as above, one reaches for arc-length s→∞ the usual flat space , b2
→1,q2

→1 ,
if the velocity vC on the curve is smaller than the velocity vq on Cq , If vC >vq  
the curve leads to the sphere b2

→1, q2
→0 . For vq we have the equation

d q2
(ω , r )= q ,ω

2 d ω+q ,r
2 dr = q,ω

2
ω, t dt +(q ,ω

2
ω , r+q ,r

2
) dr ⇒

                        vq =
  v
1+u

, u=
q ,r

2

q ,ω
2
ω ,r

.

Since ω ,r≥0 and, using III.2.21 or III.2.18 , q2
(ω , r ),ω≤0, q2

(ω , r ), r ≤0 we find

u≥0 hence 0≤vq ≤ v follows. For small r 0/r we  further get q , r
2
/q ,ω

2
∼ r0 /r and

rω , r=r (r A/r
2
−r A ,r /r ) ∼ r A/r and therefore u ∼ r⋅r0/r A ⇒ vq/ v →0 holds.

We combine the results for the metrics. For initial values III.2.29 we have the limits
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t=0, r≥2r0    `          : ds2
=          − f 2 dr 2

− r2 d Ω , f 2
=

1
r 2 a2 (

3
2

r0

r
−1)

2

t →∞ , r>2r0=  const : ds2
= b2 dt 2

− b−2 dr2
− r 2 dΩ , b2

=1−2r 0/r

r→∞ ,t>0=  const : ds2
= dt 2

− f 2 dr2
− r 2 dΩ , f 2

→ r−2
→0

Gneral on a curve C, for arc length s→∞  and with ṫ>0, ṙ>0, 0≤η
2
≤1,

                                    : ds2=   dt2 − η2 dr2 − r 2 dΩ

(III.2.32)

where η
2
=1 if vC<vq and η

2
=r−2

→0 if vC>vq .
On the null-geodesics of the manifold (light-like curves), we have the velocity

vL
2
=b2 q−2 , q2

=A2 P2 b2

a2 (1−ω
2
)+ f 2

⇒

(
v
vL

)
2

=(
r h

r
)

2
E2 q2

P2 b2 =(
r0

r
)

2
E2

a2
(1−ω2

)
(1+

f 2

q2
− f 2 )

.

With the initial values III.2.29 we  write ω
2
= 1−r 0/r A , E 2

= r A/r0−1 and hence

(
v
vL

)
2

=(
r 0

r
)

2
(r A/ r0−1)

a2 r0/r A

=
r A

r
(r A−r 0)

(r−r0)
(1+

f 2

(q2
− f 2

)
) .

At r=r A  (i.e. t=0 ) we  have q2
= f 2 and hence ∣v /vL∣=∞ . This is just the 

consequence from the fact that the characteristics start with non-zero velocity at t=0 , 
but, due to b2

( t=0)=0 , the speed of light v L  is zero. The characteristics become  

for t →∞ parallel to the t -axis. Since lim
t→∞

q2
→b∞

−2
and f 2 is at any macroscopic 

distance negligible, we receive for small r 0/r at t →∞ the ratio

∣vvL
∣≈

r A

r
= 1−b2

=
r 0

r
(1+E2

) ≈
2r 0

r
≪1 . (III.2.33)

For the initial values III.2.29 , we now give an approximate solution of III.2.27 and so of 
the characteristic equations. Assume λ=log(2ω2

) is small. Since 2ω2
=2−2r 0/r A we 

get Y A =
r A

2r0

−1≈ λ and E2
=

r A

r0

−1≈ 1+2 λ . Define λY (r ) = λ (
r

2r0

−1)= ϵ and 

use a λ  , that ϵ≤O(1) is at least not large. even for small r 0/r . Now we calculate

with exp(−λY A)≈exp(−λ2
)≈1

J (r , r A)≈ (1−e−ϵ
(1+ϵ))/λ2

+ 2 (1−e−ϵ
)/λ + log(ϵ)−log(λ) + O(1)

             ≈ (1−exp (−ϵ)(1+ϵ))/λ2
= Y r

2 1−exp(−ϵ)(1+ϵ)

ϵ
2 :=U (ϵ)⋅Y r

2. . (III.2.34)

The factor U (ϵ) is monotone decreasing and has the range 1/2=U (0)≥U≥0 . For 
ϵ≤O(1) this factor U is of non-vanishing order ( U (10)≈10−2 ) . Therefore we 

receive with III.2.25 η(2r0)
2 J (r , r A) = 2r0 E (1+E2

)t (as for III.2.28 ) and r /r0≫1
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t
2r0

= η
J (r , r A)

E (1+E2
)
≈

ηϵ

2(1+2λ)
⋅(

r
2r0

)
2

≈
ηϵ

2
⋅(

r
2r 0

)
2

. (III.2.35)

where for the factor ηϵ=U η we have approximately 1≥2ηϵ>10−2 if 0≤ϵ≤10 .

With E2
= 1+2 λ we also have for energy the approximation

E2
≈

ηϵ

4
r 2

t⋅r0

 
(III.2.36)

III.3 Conclusions 

We now offer some consequences arising from the obtained metric.

i,) Cosmic redshift

If we neglect f 2
≈0 , we have from III.2.21 q2

=(2ω2
)
(−r / r0 )b∞

−4 b2
/(1+E2

) and so for 

the velocity of a light ray (in this coordinate system) v L
2
=(2ω2

)
(r / r0)b∞

4
(1+E2

) . From 

this  we conclude sign(∂ vL
2
/∂ t) = sign(∂ω2

/∂ t ) < 0 i.e. the speed of light decreases 
with time. So any emitted photon is slower than it's predecessor, which creates a red-
shift, as from a departing source. So the provided metric, used as cosmological model, 
leads to an expanding universe. The following picture shows some numerically calculated 
characteristics and light rays. As radial parameter a=√(1−r 0/r ) is used.

ii.) Newtonian forces at large distances

As we seen, the velocity of the characteristic is small at a large distance r and also the 
temporal change of ω . So it needs some time span until the geometry of time space 

a=√1−1/r

t

light rays
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becomes nearly flat Schwarzschild-like and there will be a difference in the Newtonian 
force, even at a relative large time. To estimate this force for small 2r 0/r , we use
III.2.31and assume a momentum P2

≈2(2ω2
)
−r /r 0 = 2/σ2 , where σ≥1 is of size

log (σ)=O(1)  (e.g. 1≤ σ ≤ e4 , note σ = 1 ⇒ q2
=P2

/2+ f 2
≈ 1 indicates the flat 

space ). Thus we  have 2ω2
=σ

2r 0/ r ≈ 1+ log (σ)2r0 /r and obtain

 .
2(1−

r0

r A

) = 2ω2
≈ 1+log(η)

2r0

r
⇒ b∞

2
(r A)= 1−

2r0

r A

= log(η)
2r0

r
≪ 1

Hence the corresponding characteristic still starts near r A = 2 r0(1+O (2r 0/r ))≈ 2 r0 . 

We further have on this characteristic E2
=r A/r 0 – 1≈1 and so for the velocity

v=
−r 0

r
2
P
≈ √2

r0

r
σ  (III.3.1)

Let DA :=−P(E , r A) . Because b∞
4
(r A)∼ (r 0/r )

2 we have DA ∼ (r /r 0)
2
≫1 . For

III.2.22 we first calculate  (note E0 ' (r A)=r 0
−1 )

        G(r , r A , t) = D
r 3
−r A

3

2 r 0
2 + 4 t , D :=−P( r̂ ) , r̂∈[r A , r ] ⇒ DA>D>√2/σ

and get as an estimation

. −P r=√2 r /σ = r A ,r DA(1+4
t

DA

+
D

2r 0
2 DA

(r3
−r A

3
)) ⇒ r A ,r < (

r0

r
)

2

From this we conclude, that for q2
≈P2

/2 of size 1/η2 the variation of the energy is 

already very small E , r
2
= r 0

−1 r A, r ∼ r 0/r
2
⇒ E ,t

2
=−v E ,r

2
∼ r0

2
/ r3 . Specially we find also

b ,r
2
=

2 r0

r2 (1+O(
r0

r
)) , −b, t

2
=

2r0

r
E ,t

2
= O (r 0

3
/r4

) . Since for small velocities and a

b2
≈1 we have also ds2

≈dt 2 (up to O(r0/r ) ) and we may use the Newtonian 
approximation for the static metric

r̈ ≈−Γtt
r
=

1
2
⋅g rr

⋅g tt , r =−
b ,r

2

2q2 ≈−σ
2 r0

r 2
. (III.3.2)

This force is σ
2 times stronger than the usual Newton force, For t →∞ , σ

2 must 
tend to one, and we my interpret σ

2 as a time dependent monotone decreasing 
gravitation constant.
To estimate the distance, between two coordinates with different values for q2

=σ
−2 , 

we look at III.2.34 t
2r0

≈
η

2
U (ϵ)⋅(

r
2r0

)
2

and note ϵ=log (σ) , So we can estimate the

mass r 0 (remember r 0 is here indeed the mass and not r 0/2 as in usual GR), which 
generates  forces at a distance r , which are for t≤r 2 larger than σ -times the 
Newton force as
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r 0 ≈
η

4
⋅U ( log(σ))≈ U ( log(σ))/4 ≈ 0.1 (for σ≈1)

.

If we set e.g. r=105 Ly , t=1010 y (distance of a galactic periphery and a assumed 
galactic age), than r 0≈0.1 is measured in light years and we get roughly the mass of

1011
−1012 solar masses, i.e a galactic mass . At smaller times bigger forces acting. In 

the  limit r /r0→∞ we even get with III.2.32 σ
2
→ r 2 and so the constant force 

ẍ = F N ≈ ≈−2r0 .   

Setting this force equal to the centrifugal forces, leads to a rotation velocity at radius
R of vrot

2
∼ R , where for Kepler orbits ( σ=1 ) one has vrot

2
∼ R−1 . The ob-

served galactic orbital speeds for outer regions are of the kind vrot
2

∼ 1 and so lay 
exactly between the both extreme values of the metric discussed here, So with this 
metric we get also effects like the one associated to dark matter.
But we may also interpret this limit in another way. For a very small mass r 0 , e.g. a 
atomic or baryonic mass, we already receive at it's boundary distance R (e.g. its 
charge radius) with typically R/r 0>1035 , at this  “far limit”. So the last equation

ẍ =−2r0 defines some confinement like forces., which decay with time.

III.4 Final remarks

Since the obtained time dependent metric is not translation invariant, the main remaining
question is, what kind of events triggers the start of the described process, that is, what 
does t=0 mean. The first which comes into mind is the begin of the universe. One 
other approach would be to continue the characteristics back in time. This will lead to the
same type of equations (and difficulties) as we will get for changing the sign of p and 
we not want to analyze here.  But we are also able to extend the obtained solution to

t<0 by a reflection of the characteristics at t=0 , This accords to the mappings
t →−t , E →−E or t →−t , p→− p or E →−E , p→−p , respectively. This 

mappings not influence the  metric and we get g (t , r)=g (−t , r ) . So at all finite spatial
locations r , the metric becomes, at least in the far future and in the far past, the 
Schwarzschild metric. This ansatz now suggests the picture, that some mass or mass 
distribution first – in far past- acts on space-time as usual, but starts manipulating the 
geometry as described until t=0 . Then the inverse process leads again to the usual 
Schwarzschild metric. This again is some hint that the creation or annihilation  time of 
any matter/particles may be the source of such effects.

IV The complex Space.
In this section we want to consider the embedding provided in section II in the context of
Kähler geometry. The other sections are not dependent on the content of this one, so we 
think of this section as a proposal for people with a deeper knowledge in this subject to 
take a closer look at these kinds of spaces.
The 10 dimensional space carries the natural complex structure, which makes it a Kähler 
manifold [Hu,Mor]. The metric is the standard metric on C1,4 , a complex Lorentz (or 
Minkowski) metric

〈u , v 〉=u0⋅̄v0−∑
1

4

ui⋅̄vi ,

d 2 s=〈dz , d z̄ 〉
.

The manifold 
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M={ z∈C 1,4: 〈 z , z 〉 =−1}.

is a complex de-Sitter space. As the real one it is projective. Assuming the further 
restriction ∣z 4∣=1 , the manifold is the product of a light cone and U(1). What we aim to 
do is an orthogonal projection of the Kaluza-Klein dimension onto the light cone (the 

Hopf fibration S1
↳S 2

9 p
→ CP1,3

). Usually one derives a metric on a projective space in

a coordinate system, which arises from a projection onto the first coordinate z0 (the 
chart U 0:={( z0: ... : z n)  | z 0≠0}  ). For the embedding in the last section III, ∣z 4∣ is 
always non-zero. Also, for this reason, but not only, using a projection on this coordinate,
seems the better choice. This will give us the projective space CP1,3 .The metric 
induced from C1,4 is (see Appendix D)

ds2=
1

1−u2⋅(〈du ,du〉+
∣〈u ,du 〉∣2

1−u2 )
 ,

(IV.1)

where   u j=
z j

z 4

,  for j=0,1,2 ,3  , u2 :=〈u ,u〉M  and 〈 . , .〉M  is the complex Lorentz metric. 

Metric IV.1 corresponds to the real de-Sitter metric (see [Dr] ) in projective coordinates, 
in the same way as the Fubiny-Study metric corresponds to the real projective metric of 
the ball. It looks almost like the usual metric on the hyperbolic space ℂ H 4 [Go], but 
with the Minkowski scalar product <,> “inside”,  instead of the Euclidean 3 . Denote the 
metric on the tangent bundle now as:

g (v ,w)=
1

1−u2⋅(〈v ,w 〉+
∣〈v ,w 〉∣2

1−u2 ) ,   v , w∈T u(M )
 

(IV.2)

Using Einstein sum conventions, IV.1 reads as

d 2 s=hμ νduμ d ūν ,  hμν=g (∂/∂ uμ ,∂/∂ ūν) ,

hμ ν:= p(ημν+ p ūμ uν)  ,  ημν=  diag(1,−1,−1,−1) ,  p=(1−u2
)
−1 .

The metric IV.1 / (IV.2) is Kähler, with Kähler potential ϕ (for definition see 
[Hu,Mor,Go]) 

ϕ=log(1−u2
) ,   hμν=

d 2
ϕ

∂ zμ∂ z̄ν
 . (IV.3)

For calculating the determinant we write the hermitian matrix h  as

h=p η(1+pσ) ,  σν
μ
=nμλ ūλ uν= ūμ uν ,  nμλ nλ ν=1  (= diag (1,1,1 ,1)) .

Therefore
det h=det ( pη)⋅det (1+ pσ)=−p4

⋅det (1+ pσ) .

The second factor is calculated using

3 Due to the definition in [Vr] it is ℂ P1,3 . . Note the opposite sign of the metrics here 
and in the mathematical literature.
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det A=exp( tr log(A)) (tr  := Trace of the matrix) 

With σ
2
=u2

⋅σ ⇒ σ
j
=u2 ( j−1)

⋅σ we get
 

log(1+pσ)= −∑
j=1

n
(−p σ) j

j
 =  

−σ

u2 ∑
j=1

n
(−pu2

)
j

j
=
σ

u2 log(1+pu2) for 0<∣u2∣<1

and log(1+pσ)=pσ if u2
=0 . Now tr (σ)=u2 and so 

tr log(1+pσ)  = log(1+ pu2
) ,  if ∣u2∣<1 .

Finally we get
 det (h)=  − p4

⋅(1+pu2
)= −(1−u2

)
−5

and so log(det(h))=±i π−5 log(1−u2) .

The Ricci Tensor for Kähler manifolds [Hu,Mo] is simply given by

Ricμν=  −
∂

2 log(det (h))
∂ zμ ∂ z̄ ν

  ⇒  Ricμ ν=  5
∂

2 log(1−u2
)

∂ zμ∂ z̄ν
 (IV.4)

Comparing this with IV.3 we see, that the metric is Kähler-Einstein Ricμν=5 hμ ν .
The curvature is positive as it is for the classical real de-Sitter space (and so the name 
“complex de-Sitter space” is in all senses appropriate).
For any embedding into M endowed with the metric II.9 and with ∣z 4∣:=ρ=const.

 ⇒ u2
=1−ρ−2 (like we have done in section III)  the metric simplifies to

ds2
=ρ

2
⋅〈du , du〉+∣(ρ2

⋅〈u , du 〉)∣
2

 (IV.5)

and if =1 or after a rescaling

     ds2
=〈du ,du〉+∣〈u ,du 〉2∣  (IV.6)

Because u2
=const⇒〈u , du〉=−〈du , u 〉  (→ 〈du , u 〉 is pure imaginary)

one may write also  

 ds2
=〈du ,du〉−〈u ,du 〉2

.

A consequence of this condition is that the second summand in the metric does not 
contributes to the Kähler form and det (h)=−1 .
For writing down the Kähler form we use upper-lower indices with respect to the Lorentz 
metric uμ=ημνuν ,… and write the metric again as 

ds2
=hμ ν̄duμ d ūν ,  hμ ν̄=(ημν+uμ ūν) . 

The Kähler form is now (up to some factor) 

ω= hμ ν duμ∧duν=duμ∧d ūμ+uν ūμ duμ∧d ūν=duμ∧d ūμ−(uμd ūμ)∧(uνd ūν) .
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Obviously, the second summand vanishes. So the Kähler form is just the same, as for the
flat metric (the complex Lorentz metric).

ω= duμ∧d ūμ
=dvμ∧dwμ ,   u=v+iw , v , w∈ℝ

1,3

An embedding is called totally real (respectively Lagrangian in symplectic geometry), if 
the induced Kähler form vanishes everywhere 4 (Go, Oh). So any totally real embedding 
into the complex Minkowski space C1,3 , for which u2 is constant, is also totally real as
embedding into M equipped with the metric II.9.
The embedding provided in the previous section is not Lagrangian. Its induced Kähler 
form doesn't vanish. For constructing a Lagrangian embedding set

u0=a e iω
⇒ v0=a cos (ω) , w 0=a sin(ω) ,   a ,ω∈ℝ

u j=b j e
iη
⇒ v j=b j cos(η) , w j=b j sin(η) , b j ,η ∈ ℝ , j=1,2,3

b2 :=∑ b j b j , a2
=b2

+k 2 , k 2:=u2
=constant , b :=√(b2

)

 

(IV.7)

and therefore

 dv0∧dw0=a da∧d ω ,   ∑ dv j∧dw j=∑ b j db j∧d η=1/ 2⋅∑ db j
2
∧d η=b db∧d η .

Because bdb=1/2 d (b2)=1/2 d (a2)=a da the Kähler form is ω=a da∧d (ω−η) and 
so the Kähler form vanishes, if ω−η= f (a) , which is what we demand in the 
following. For calculating the metric II.9 under this restriction, rename b=r (for getting
the “familiar” 2-D surface term r 2 dΩ in the metric) and receive

 

duμ d ūμ
= dvμdvμ

+dwμ dwμ =

= a2 d ω
2
−r2 d η2

−r 2 dΩ = k 2 d ω2
+r 2

(d ω2
−d η2

)−r2 d Ω .

With u0 d ū0=a (da+ia dω) ,  ∑
j=1

3

u j d ū j=∑
j=1

3

r j(dr j+ir j d η)=r (dr+ird η) ,  II.9 finally 

becomes (use ada=rdr for constant u2 )

ds2
=a2 dω2

−r2 d η
2
−r 2 dΩ+(a2 d ω−r2 d η)

2  . (IV.8)

The metric now diagonalizes with the substitution

d ψ=
a2
+1

a2
+1−r2 (dω−d η)+d η

This DGL could always be integrated, due to ω−η= f (r ) . From the substitution one 
also immediately sees that ψ−η is also just a function of r, and vice versa, r is just a
function of ψ−η . Summarized, diagonalizing IV.8 yields

4 For a totally real embedding the induced metric has no imaginary part. On the other 
hand there are complex submanifolds (closed complex subspaces). If, for an 
embedding,  the tangential space at a point is mapped into a complex subspace , this 
point is called a complex point. The Kähler angle (or angle of holomorphy,[Sc], [Go]) 
between two vectors measures this difference. It is always π /2 for totally real 
embeddings and zero at complex points.
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ds2
=a2 1+a2

−r 2

1+a2 ((1+a2
−r 2

)d ψ
2
−(r / a)2 d η

2
)−r2 d Ω  (IV.9)

Now if a=r ⇔ k=0 , (as in section III; the condition k 2 :=u2
=0 means, that we 

consider the complex light cone) equation IV.9 reduces to 

ds2
=

r2

(1+r 2
)
(d ψ

2
−d η

2
)−r 2 dΩ  . (IV.10)

To calculate the geodesics of this metric, we use the Euler-Lagrange formalism with
ẋ :=dx /dt , and for an affine parameter t proportional to the arc length

S [ x , ẋ ]=∫√(L (x , ẋ ))dt=min ⇔ S [ x , ẋ ]=∫ L( x , ẋ )dt=min holds [St].

So the Lagrange function corresponding to IV.10 is

 L=
r2

(1+r2
)
(ψ̇

2
−η̇

2
)−r2

⋅S ,   with the usual surface term S=θ̇
2
+sin2

(θ) ϕ̇
2

.

Writing r=sinh(ς) , where ς  is some function of ψ−η , results in

r ' :=
dr

d ψ
=−

dr
d η

, and the Euler-Lagrange equations for the variables ψ  and η  

are

d
dt
(cosh 2

(ς)⋅ψ̇)= cosh(ς)sinh(ς)⋅ς ' (ψ̇2
−η̇

2
−S )

d
dt
(cosh 2

(ς)⋅η̇)= cosh(ς)sinh(ς)⋅ς ' ( ψ̇2
−η̇

2
−S )

and so it follows
cosh2

(ς)⋅(ψ̇−η̇) = const .

Because ς is only a function of ψ−η , the last equation is solvable iff ψ−η is 
constant. So on geodesics we have r=constant . Now putting this back into the metric
IV.10 only the surface term remains. The corresponding geodesics are the great circles 
on the ball of radius r . Because ψ−η is constant also ω−η is constant  and this 
geodesics may be written as (using the equator as a great circle)

u0=r ei (ω(t)−ω0) , u1=r cos (φ(t ))eiω(t ) , u2=r sin(φ(t))eiω( t ) , u3=0  

or u0=r ei (ω(t)−ω0) , u1=u0cos (φ( t)) , u2=u0sin (φ(t )) , u3=0 .

The phase difference ω0 is the value of the function f (r ) = ω−η at constant r.
On the geodesic great circles any point is oscillating “wave-like” in higher dimensions. 
The curves are space-like and nothing like an “eigentime interval” or a “proper length” 
exists. The metric degenerates to the one of a 2-D surface, as it is for the light cone in a 
flat Minkowski space ( t 2=r 2 ⇒ ds2=−r2 d Ω ). There is no dependency on the 
geodesics between the point on the surface (the angle φ on the great circle) and the 
frequency ω . So for example one may set φ=constant to get “oscillating” points or
ϕ=ω for stationary waves.
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Summarized we have, that the geodesics of an Lagrangian embedding into the complex 
light cone ( u2=0 ) with coherent phases of the space-like dimensions, are arbitrary 
“waves” on the Minkowski light cone. 
Now we calculate the volume form of the Lagrangian subspace (again for any k ) . We 
have

u j= x j e
i η ⇒ e−2iηdu j∧duk = dx j∧dxk+i (x j dx i+ xi dx j) and therefore

e−3iηdu1∧du2∧du3 = dV+idS∧η

where dV is the 3D volume form and dS the surface form,
dV := dx1∧dx2∧dx3, dS= x3 dx1∧dx2+x2 dx3∧dx1+ x1 dx2∧dx3 ⇒ dr∧dS=rdV .

So, with du0=eiω
(da+i a dω) , a2

=r2
+k 2 , ω−η= f (r ) the volume form is

dVol :=du0∧du1∧du2∧du3

= ei (ω+3η)
( ia⋅d ω∧dV+i da∧dS∧d η−a⋅d ω∧dS∧d η)

= e i(ω+3η)
(i(ad ω−

r2

a
d η)∧dV+a d η∧dω∧dS )

= a e i(ω+3η)
(rf '+i(

k
a
)

2

)d η∧dV.

We see that the volume form is identical zero if ω−η= f (r ) = constant and k = 0. In 
this case the metric IV.9 degenerates again just to a 2-D surface, the space is a light 
cone. From the volume form we read of the Lagrange angle (the phase of the form) 
[Vr,An] as ω+3η+atan(k 2

/(rf ' a)) .  A Lagrangian submanifold is minimal, iff this 
angle is constant [An]. But then from ω−η= f (r ) it immediately follows, that ω
and η could only depend on r and so the volume form vanishes also. In this case, an 
appropriate choice of the arbitrary function f (r ) would transform IV.9 to a 3D flat 
space metric. So the minimal Lagrangian submanifolds with u2=const , are the light 
cone (with all metric structure in 2-D spheres) or the pure 3-D spatial space (the absence
of  “time-intervals” could be interpreted as anything “travels with infinite speed”).

In complex coordinates, the parametrization II.7 looks like 

u0=r ei ω , u j=x j e
iη , j=1,2 ,3 , u4=eiβ(r )

ω=κ(r )sinh(t) , η=κ(r )cosh (t)
 , (IV.11)

which corresponds in the projective space (omitting the 2-D spherical part) to

u0=r ei ω , ω=κ(r )sinh(t )−β(r ) ur=r e iη , η=κ(r )cosh (t)−β(r ) .

Here the difference of the angles is ω−η=−κ e−t , which vanishes for t →∞ . So in 
this limit, the embedding becomes a minimal Lagrangian embedding, the light cone. 
Anything is concentrated on 2-D spheres, the boundary of the space. Remember, this 
result holds true for any stationary, isotropic metric, for which II.10 is true. That 
“anything is concentrated” on a 2-D surface reminds us that the entropy of a black hole 
depends only on the surface area.
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V Geodesics from Classical Kaluza-Klein Theory 

The classical K-K theory

Up to now the Kaluza-Klein dimensions have been only used to result in the correct 
metrics, but not in their original sense to combine gravitation theory with electro-
magnetism. First have a look at the standard interpretation. For this we rename the five 
coordinates as usual to xμ , μ=0…3, y := x4 ( sometimes the index 5 is used for the 
extra dimension) and use again the standard notation, i.e summation over repeated 
upper, lower indices from 0 to 3 and aμ :=gμνaν

, where gμν are the components of 
a 4-D metric tensor.
The Kaluza-Klein line element is [WL, Le, Str, Bl, Du]

ds2
= gμνdxμ dxν

−Φ 2
⋅(dy+Aμ dxμ)2  (V.1)

and the corresponding Lagrange function

L = gμν ẋμ ẋν
−Φ 2

( ẏ+Aμ ẋμ)2,  where ẋ :=dx /ds  (V.2)

Now make the essential assumption of the theory, that the fields ( Aμ  and Φ ) do not 
depend on y (called the “cyclic” assumption). So the fifth coordinate y is cyclic and 
due to Noether's first theorem, there is a conservation law. The geodesic equation for 
this coordinate just becomes 

Φ( ẏ + Aμ ẋμ
)= q ⇒Φ(dy + Aμ dxμ

)=qds  (V.3)

where q is an integration constant (identified later as the ratio unit-charge per mass).  
Setting Φ=1 , calculating the other geodesics, and using II.9 leads to the familiar 
equation of a particle in an electromagnetic field [Bl,St].

ẍσ
+Γμν

σ ẋμ ẋν
=q⋅Fμ

σ ẋμ   or with uμ := ẋμ

Duσ :=
duσ

ds
+Γμν

σ uμ uν
=q⋅Fμ

σuμ  (V.4)

A main problem of the  Kaluza-Klein (or KK) theory is that the metric is in fact not really 
a metric, as the quantities Aμ are not coordinates of a four-vector. As the components

Aμ=g 4μ / g 44 are functions of the metric components, their behavior under coordinate 
transformation differs essentially from that of coordinates of a four-vector. If the Aμ

are defined to be vector-components, the metric “is not invariant under arbitrary 5-D 
coordinate transformations” [Bl], which means, it is not a metric! To bring this difference 
in line, one limits the allowed coordinate transformations. One demands that they must 
have the specific form xμ

→ x̃μ
( xμ

) , y→ ỹ= y+h( xμ) , for which g 44 remains 
unchanged and so

     Aμ dxμ=g4μ dxμ /g 44 → g̃ 4μ d x̃μ
/ g44+(∂ h/∂ xμ)d x̃μ= Ãμd x̃μ

+d ỹ−dy .

So under this kind of transformation, the “vector” Aμ dxμ “remains the same” in 
different coordinate systems modulo some gauge transformation, which does not affect 
electromagnetic theory. But, applying mathematical theory and methods on not well-
defined “hybrids” like this one, is in some way suspect and must be done very carefully.  

Equation II.9 is usually interpreted in correspondence to gauge invariance. If applying a 
gauge transformation, the trajectory through the 5'th dimension has to be changed to 
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keep the expression constant. The overall change may be interpreted as a coordinate 
transformation of the allowed type. 
In standard reading of the KK theory, the constant q in V.3 is interpreted as the ratio 
e-charge/mass. But in the geodesic equations V.4 the derivatives, denoted by the dot, 
are with respect to the total five dimensional arc length and this is, due to V.1, different 
from the 4-dimensional arc length ds4=d τ (the eigentime).  Under the cyclic 

assumption with  V.3 we have ds2
=d τ

2
−q2 ds2

⇒ ds2
⋅(1+q2

)=d τ
2 (see also [WL]). To

compare V.4 with standard electromagnetic theory, we have to replace in it the 
derivative with respect to the arc-length s , with the derivative with respect to the 4-D 
arc length τ ( ds→ d τ ). Doing this, the structure of equation V.4 keeps the same, if 
we define the dot as the derivative with respect to τ and if we replace

q→q /√(1+q2
) , which now has to be interpreted as the ratio e-charge/mass.

The “covariance”-problem of the theory arises from the 5'th dimension and the inter-
pretation of Aμ as components of a four vector. So one should try to find an embedding
of the 4-D space into the 5-D Kaluza-Klein space, with the desired properties, that is, in 
the optimal case, with the same geodesic equations. The development and analysis of a 
satisfying, “covariant” Kaluza-Klein Theory, which considers a “full dependency” on all 
dimensional coordinates, is a special field of research (see e.g [WL, Le]) . Such an ansatz
results in generally “orthogonal forces” (orthogonal to the 4-D hyperplane), looses gauge
invariance, and results also in some other interesting phenomena (see [Le] and literature
cited there). [Le] constructs a theory in which the forces are again gauge invariant, but it
would not be astonishing (for me), if in a “final” theory, gauge invariance must be 
dropped. As seen, “using some gauge” has in this theory something to do with choosing 
a coordinate system, but in general relativity a lot of other, “classically conserved” 
quantities depend on the coordinate system. Noether's second theorem does not allow 
conserved tensor components in general relativity [BB,FFM,No]. I not want to discuss 
and go deeper inside the research about KK-Theory. A common effect of all these 
approaches is also that electromagnetic and gravitation forces are not independent, even
though the authors do not mention this explicitly.

Geodesics  from a KK theory– like ansatz

The model discussed in this article seems to not fit together with the standard KK-
Theory. Nevertheless it may be of interest to see how it looks under a similar point of 
view.

For this let's come back to the stationary metric II.6 . With m2
as defined on the right 

side of equation II.9 , but now keeping  as another independent coordinate, the 
metric is

ds2
= a2 dt 2 – b−2 dr2

−r2 d Ω+m2 dr 2
−d β2

 (V.5)

and the associated Lagrange function, written in the usual way, 

L = gμν ẋμ ẋν
+(mṙ )2−β̇2

.
Note, the metric gμ ν is here already the target metric II.8 in section II .

Let now ̇=B ẋ
B4 ẏ . In the following we use Latin indexes to run from 0 to 4 and  

with the additional definitions 

B j :=, j   j=04 , B :=B j ẋ j
≡ ̇

P j := r j m , P :=P j ẋ j
=mṙ

(an index “r”, e.g. B r , denotes the index corresponding to a radial quantity and so 
on), the Lagrangian simplifies to
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L = gμν ẋμ ẋν
−B2

+P2
 (V.6)

For an expression X =X j ẋ j we have ∂ X /∂ ẋ j
=X j and ∂ X /∂ x j

=X , j , so 

d
ds

∂ X

∂ ẋ j
−
∂ X

∂ x j
= Ẋ j−X , j

and the Euler-Lagrange equations are

 j=B Ḃ j−B, jḂ B jPP , j−
d
ds
 PP j ,  j :=Du j  for j4,4=0

(with Du j as defined in  V.4) . Because of B j , k=Bk , j ⇒ Ḃ j=B , j , in the geodesic 
equations above no electromagnetic field will appear. The field is, as also seen obviously 
in the definition, a pure gauge field. With the standard KK-Ansatz Bμ=Φ Aμ , B4=Φ ,  
this last symmetry reads as Φ (A j ,k−Ak , j)+(Φ ,k A j−Φ , j Ak )=0 , and this may be 
interpreted that the field tensor ( F jk=A j , k−Ak , j ) annihilates with the second 
summand. The geodesic equations now reduce to

γ j=Ḃ B j+PP , j−
d
ds
(PP j) .

For the derivatives of P one calculates

PP , j=
(w2

) j

2
=
( ṙ )2

2
(m2

), j = ṙ 2 m m' δr j ,
d
ds
(PP j)=

d
ds

m2 ṙ⋅δr j .

and so for the Euler-Lagrange equations

γ j = B j Ḃ+(ṙ 2 mm '−
d
ds

m2 ṙ )δr j =−m(
d
ds

m ṙ )δr j

or

ẍσ
+Γμν

σ ẋμ ẋν
= Bσ Ḃ−m(

d
ds

mṙ ) gr σ

and             0 = B4 Ḃ
 (V.7)

The last equation has the solutions B4=0 and Ḃ=0 (or both vanishing). The solution 
with B4=0, Ḃ≠0 splits itself into a set of different types of geodesics, and specifically 

contains , with B j=0  for j≠r  and B r=m. , the geodesics of the target metric. In this 
last case, β may be interpreted as a gauge field, which forces trajectories to stay in the
submanifold, defined by d β = mdr or, e.g. if the target metric is the flat one, the field
β “keeps the space flat”. We will discuss other possible geodesics of type B4=0

below. While for B4=0 the path in the y-dimension is arbitrary, that means this 
dimension is artificial and superfluous, this is not the case for the solutions

B = β̇ = const. and. Submanifolds, created by sets of geodesics are by construction 
geodesic submanifolds. The manifolds we discussed in section III are special examples of
this.
We end this section with one final remark.
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Where in the approach above, the  electromagnetic field tensor always vanishes (pure 
gauge fields), the complex metric IV.6 offers the possibility to define a non-vanishing one
in the metric via

〈A ,dx 〉 = i 〈u ,du〉 ⇒ Aμ=i⋅uν

∂ ūν

∂ xμ

ds2
=〈u ,u 〉+〈A , dx〉2

.

With the parametrization of (IV.7) one gets for the field

u0
∂ ū0

∂ xμ= xμ−δμ
0 x0−irω ,μ , ∑

j=1

3

u j
∂ ū j

∂ xμ = xμ−δμ
0 x0−ir η,μ

⇒ Aμ=r⋅(ω−η),μ ⇒ 〈A , dx 〉 = r⋅(ω−η),μ dxμ=d (r⋅(ω−η))−(ω−η)dr
,

so this is a radial field, modulo a gauge field.

VI Discussion and Summary
We offered an embedding of space-time in a 10 dimensional De-Sitter space,  composed 
of an 8-D light cone and a Kaluza-Klein S1  Sphere. The light cone itself consists of two
copies of the 4-D space, with congruent spatial angles. The diameter of the KK-Sphere 
determines the curvature of the total space and defines a minimal space resolution for 
the embedding. From this it is deduced that the diameter of the KK-dimension is of the 
size of a Planck length.

In the following , we extended the metric, by modifying the phase of the KK-dimension. 
This results, after diagonalization, in a non-stationary metric and a PDE-system. We 
shortly presented an associated simple particle picture for this equations. From general 
considerations we selected some special initial values and discussed the characteristic 
equations and the limit values for the metric. In this metric the gravitation “constant 
“and the speed of light is time and space dependent. This effects leads to a redshift of 
radiation from far objects as also to larger attractive forces on orbits and so describes 
main effects concerned with “dark energy”  and “dark matter”. At initial time, the metric 
is pure three dimensional, but may be seen as Schwarzschild-space, where the time 
dimension is joined to the spatial ones. For any t>0 the time becomes independent 
and this deformation decays with time and leads finally to the  Schwarzschild space. But 
for any finite time at radial infinity, the spatial sub space converges to just a 2-
dimensional sphere.

In section IV  the space is considered in the context of basic complex projective 
geometry. This section is thought of as proposal for scientists with a deeper knowledge in
this subject to take a closer look at this kind of space for further research to include 
quantum effects. The theory of Lagrangian submanifolds, for example, may lead to Dirac-
like field equations as shown in [Ai] for C2 . Ten dimensional spaces are also used in 
the Grand Unified Theory (the Georgi-Glashow model) and in some string theories. There
is a large amount of literature (in mathematics and physics) about the standard complex 
hyperbolic space (e.g. in AdS/CFT correspondence ... ), while physics literature 
concerning the complex de-Sitter space seems to be very sparse. 

The last section V examines the proposed embedding in the context of classical Kaluza-
Klein theory. Whereas the electromagnetic theory could not be inferred from this 
embedding, the set of geodesic submanifolds leads to spaces, which we considered in 
section III .
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Appendix A (Some properties of classical dS and AdS)

A general, isotropic, stationary metric is written in the form

ds2
= a2

(r)dt 2 –b−2
(r )dr 2

−r2 d Ω (A1)

with a2
(r )= 1+U (r ) ,   b2

(r) = 1+V (r ) . 

For U=V>0  set U=sinh2
(η) and for U=V<0  set U=- sin2

(η)
the metric than is:

ds2
= cosh2

(η)⋅dt 2 – d η
2
−r2

(η) dΩ , (A2)

resp. ds2
=  cos2

(η)⋅dt 2 – d η
2
−r2

(η) dΩ

A Friedman-Lemaitre-Robertson-Walker (FLRW) has the form:

ds2
=  dt2 – K2

( t)⋅(d η
2
−r2

(η) dΩ) (A3)

Characteristic properties of dS:

 Hypersurface in R
1,4

: x2
≡ 〈 x , x 〉 ≡ x0

2
−∑

1

4

x i
2
=−α

2

 Metric of R1,4 : ds2
=d x0

2
−∑

1

4

d x i
2

 dS Metric (stationary): U (r )=V (r )=−(r /α)2

r=α⋅sin(η)

 in FLRW coordinates r=sin(η) , K=α⋅cosh(t )

 Newton potential: U N =
U
2
=
−(r /α)2

2

 Ricci curvature + Einstein tensor: Ric =3⋅α−2
⋅g , ⇒G=−Ric=−3⋅α−2

 Einstein equation: G=−Λ⋅g⇒Λ = 3⋅α−2
⋅g > 0

Characteristic properties of AdS:

 Hypersurface in R
2,3

 :
x2
≡ 〈 x , x 〉 ≡ x0

2
+x1

2
−∑

2

4

xi
2
=α

2

 Metric in R 2,3 :
ds2

=d x0
2
+d x1

2
−∑

2

4

d x i
2

 AdS Metric (stationary):  U (r )=V (r )=+(r /α)2 
r=α⋅sinh(η)
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 in FLRW coordinates r=sinh(η) , K=α⋅cos( t )

 Newton potential:  U N    =+
1
2
⋅(

r
α )

2

 Ricci curvature + Einstein tensor :    Ric =−3⋅α−2
⋅g , ⇒G=−Ric=3⋅α−2

 Einstein tensor :  G=−Λ⋅g⇒Λ =−3⋅α−2
⋅g < 0

Appendix B ( Parametrization of dS and AdS in the 6 -D light cone)

In the following have a look how a global parametrization of K 

Κ={x∈R2,4 : x2 :=〈 x , x 〉=0 }

influences the induced metrics.

Using spherical coordinates in the last 3 space-like coordinates (which now are treated as
the usual space dimensions !), the metric of R2,4 reads as: 

ds2
= dx0

2
+dx1

2
−dx5

2
−dr 2

−r2 dΩ ,
where dΩ is the usual 3-d surface element and K is defined through the equation

x0
2
+ x1

2
= x5

2
+r 2.

. (B1)

1.)  In circular parametrization,

x0 = a⋅sin(ω) , x1 = a⋅cos(ω) , x5 = a⋅cos(ϕ) , r = a⋅sin(ϕ) ,  a := cosh (η)

the metric on K becomes

ds2 = cosh2(η)⋅(d ω2−d ϕ2−sin 2(ϕ)d Ω) . (B2)

Now dS is the section x1 = cosh (η)⋅cos (ω)=1 . Putting this into the (B2) leads to the 
Friedman-Lemaitre-Robertson-Walker (FLRW) metric

ds2
= d η

2
−cosh2

(η)(d ϕ
2
+sin2

(ϕ)d Ω) .

with η as the eigentime parameter and radial parameter r=sin(ϕ) (note this 
parameter r now is not the same as the “original” one). 

AdS is the section x5= cosh (η)⋅cos(ϕ)=1 .  Applying this on (B2) induces the 
stationary Anti-de-Sitter metric

ds2
= cosh2

(η)⋅d ω
2
−d η

2
−sinh2

(η)dΩ .

with ω as the eigentime parameter and radial parameter r=sinh(ϕ) .

2. ) In hyperbolic parametrization,

 x0 = a⋅sinh(ω) , x1 = a⋅cosh (ϕ) , x5 = a⋅cosh(ω) , r = a⋅sinh(ϕ) ,  a := cos (η)
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the metric on K is

ds2
= cos2

(η)⋅(d ω
2
−d ϕ

2
−sinh2

(ϕ)d Ω) (B3)

dS is the section x1 = cos (η)⋅cosh (ϕ)=1 . Now, putting this into (B3), we get the 
stationary metric

ds2
= cos2

(η)⋅dω2
−d η2

−sin2
(η)d Ω

with ω as the eigentime and radial parameter r=sin(η) .

AdS is the section x5= cosh (ω)⋅cos(η)=1 .  Again applying this relation to (B3),  leads
to the FLWR metric

ds2
= d η

2
−cos2

(η)( d ϕ
2
+sinh2

(ϕ)dΩ)

with η as the eigentime parameter and radial parameter r=sinh(ϕ) (again this 
parameter r now is not the same as the “original” one). 

Appendix C (8-D embedding)

On R2,6 we start with the same parametrization as for R2,8 , but without the Kaluza-
Klein sphere, and we do not restrict the space on a sphere. The metric is equivalent to
(II.5)

ds2
= A2 d ω

2
+dA2 – dr2

−r2 d ϕ
2
−r2 d Ω

but with no restriction for A. So set ω=t and A=1+V (r ) to get the metric of the 
form

ds2
= A2 d ω

2 – A−2 dr2
−r 2 dΩ

we have to integrate just

r 2 d ϕ
2
=dA2

−
V

1+V
dr2

=(−V+(
1
2

dV
dr

)
2

)⋅
dr 2

1+V
.

This is always possible, for the considered potentials V =−r2  (dS), V =+r2 (AdS) 
and V =−r0 /r (Sch).

Appendix D (The metric of  complex de-Sitter space)

In the following I point out the “motivation” for the projective metric in IV.  

Let 〈 . , .〉 be the scalar product on Cd ,n+1−d . On M h={ z :〈 z , z 〉=h} ,   h∈ℝ , define

projective coordinates u j=
z j

z n

,  j=0…n , with un  = 1 ( to keep this last constant 

coordinate is not usual but simplifies the notation in the following) . 
The orthogonal component of a vector at z  is an element of the kernel of the map

du , that is, vectors parallel to the coordinate “vector” z. The Cartesian coordinates
v :   {v j ,  j=…n} of a vector in Cd ,n+1−d could be expressed through the coordinates

v̂ in the basis ∂ui
 (extended to n+1 dimensions) and the orthogonal vector on M k
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v=zn v̂+vn u  with v̂n=0 (C1).

We also have the usual decomposition of a vector in a tangential and orthogonal part
v=vT

+h−1
⋅〈v , z 〉 , z :=vT

+bv⋅z .  Now define the induced metric on M to be just

(v̂ , ŵ)  =  〈vT ,wT 〉 .

The left side is just an n-dimensional metric, the n-th components are zero (see C1)! 
Now inserting (C1) into 〈vT , wT

〉  = 〈v , w〉−h⋅bv b̄w and using ∣z n∣
2
⋅〈u , u 〉=h and 

〈v ,u 〉=zn 〈 v̂ , u 〉+vn 〈u ,u〉 leads finally after some lines of calculations to

(v̂ , ŵ)  =∣zn∣
2
(〈 v̂ , ŵ 〉+∣z n∣

2
〈 v̂ , u 〉〈u , ŵ 〉) . 

Now we can drop the n-th component on the right side also. The final expression we 
obtain now 〈u ,u 〉=〈u ,u 〉n+g nn , where 〈u , u〉n denotes also the reduced n- 

dimensional metric and g nn=〈∂ zn
,∂ zn

〉 is its  last diagonal entry. For C1,4 ,  gnn  =−1

and with h=−1  , ∣z n∣
2
=

1
(1−〈u , u 〉n)

, as in (IV.1).
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